Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 628(8008): 620-629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509369

RESUMO

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Assuntos
Infecções por Vírus Epstein-Barr , Interleucina-27 , Receptores de Interleucina , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Alelos , Linfócitos B/patologia , Linfócitos B/virologia , Linfócitos T CD8-Positivos/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Finlândia , Frequência do Gene , Herpesvirus Humano 4 , Homozigoto , Mononucleose Infecciosa/complicações , Mononucleose Infecciosa/genética , Mononucleose Infecciosa/terapia , Interleucina-27/imunologia , Interleucina-27/metabolismo , Mutação com Perda de Função , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Resultado do Tratamento
2.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793571

RESUMO

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Assuntos
Síndrome Linfoproliferativa Autoimune , Proteína de Domínio de Morte Associada a Fas , Humanos , Apoptose/genética , Doenças Autoimunes/genética , Síndrome Linfoproliferativa Autoimune/genética , Hibridização Genômica Comparativa , DNA , Receptor fas/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células Germinativas/patologia , Mutação
3.
Nat Commun ; 14(1): 3728, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349339

RESUMO

Loss of NBEAL2 function leads to grey platelet syndrome (GPS), a bleeding disorder characterized by macro-thrombocytopenia and α-granule-deficient platelets. A proportion of patients with GPS develop autoimmunity through an unknown mechanism, which might be related to the proteins NBEAL2 interacts with, specifically in immune cells. Here we show a comprehensive interactome of NBEAL2 in primary T cells, based on mass spectrometry identification of altogether 74 protein association partners. These include LRBA, a member of the same BEACH domain family as NBEAL2, recessive mutations of which cause autoimmunity and lymphocytic infiltration through defective CTLA-4 trafficking. Investigating the potential association between NBEAL2 and CTLA-4 signalling suggested by the mass spectrometry results, we confirm by co-immunoprecipitation that CTLA-4 and NBEAL2 interact with each other. Interestingly, NBEAL2 deficiency leads to low CTLA-4 expression in patient-derived effector T cells, while their regulatory T cells appear unaffected. Knocking-down NBEAL2 in healthy primary T cells recapitulates the low CTLA-4 expression observed in the T cells of GPS patients. Our results thus show that NBEAL2 is involved in the regulation of CTLA-4 expression in conventional T cells and provide a rationale for considering CTLA-4-immunoglobulin therapy in patients with GPS and autoimmune disease.


Assuntos
Síndrome da Plaqueta Cinza , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Plaquetas/metabolismo , Proteínas Sanguíneas/genética , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Síndrome da Plaqueta Cinza/genética , Síndrome da Plaqueta Cinza/metabolismo
4.
J Clin Immunol ; 43(1): 181-191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155879

RESUMO

PURPOSE: Hypogammaglobulinemia in a context of lymphoma is usually considered as secondary and prior lymphoma remains an exclusion criterion for a common variable immunodeficiency (CVID) diagnosis. We hypothesized that lymphoma could be the revealing symptom of an underlying primary immunodeficiency (PID), challenging the distinction between primary and secondary hypogammaglobulinemia. METHODS: Within a French cohort of adult patients with hypogammaglobulinemia, patients who developed a lymphoma either during follow-up or before the diagnosis of hypogammaglobulinemia were identified. These two chronology groups were then compared. For patients without previous genetic diagnosis, a targeted next-generation sequencing of 300 PID-associated genes was performed. RESULTS: A total of forty-seven patients had developed 54 distinct lymphomas: non-Hodgkin B cell lymphoma (67%), Hodgkin lymphoma (26%), and T cell lymphoma (7%). In 25 patients, lymphoma developed prior to the diagnosis of hypogammaglobulinemia. In this group of patients, Hodgkin lymphoma was overrepresented compared to the group of patients in whom lymphoma occurred during follow-up (48% versus 9%), whereas MALT lymphoma was absent (0 versus 32%). Despite the histopathological differences, both groups presented with similar characteristics in terms of age at hypogammaglobulinemia diagnosis, consanguinity rate, or severe T cell defect. Overall, genetic analyses identified a molecular diagnosis in 10/47 patients (21%), distributed in both groups and without peculiar gene recurrence. Most of these patients presented with a late onset combined immunodeficiency (LOCID) phenotype. CONCLUSION: Prior or concomitant lymphoma should not be used as an exclusion criteria for CVID diagnosis, and these patients should be investigated accordingly.


Assuntos
Agamaglobulinemia , Imunodeficiência de Variável Comum , Doença de Hodgkin , Humanos , Imunodeficiência de Variável Comum/diagnóstico , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/complicações , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/complicações , Doença de Hodgkin/diagnóstico , Linfócitos T , Fenótipo
5.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35657354

RESUMO

Epstein-Barr virus (EBV) can infect smooth muscle cells causing smooth muscle tumors (SMTs) or leiomyoma. Here, we report a patient with a heterozygous 22q11.2 deletion/DiGeorge syndrome who developed a unique, broad, and lethal susceptibility to EBV characterized by EBV-infected T and B cells and disseminated EBV+SMT. The patient also harbored a homozygous missense mutation (p.V140G) in TNFSF9 coding for CD137L/4-1BBL, the ligand of the T cell co-stimulatory molecule CD137/4-1BB, whose deficiency predisposes to EBV infection. We show that wild-type CD137L was up-regulated on activated monocytes and dendritic cells, EBV-infected B cells, and SMT. The CD137LV140G mutant was weakly expressed on patient cells or when ectopically expressed in HEK and P815 cells. Importantly, patient EBV-infected B cells failed to trigger the expansion of EBV-specific T cells, resulting in decreased T cell effector responses. T cell expansion was recovered when CD137L expression was restored on B cells. Therefore, these results highlight the critical role of the CD137-CD137L pathway in anti-EBV immunity, in particular in the control of EBV+SMT.


Assuntos
Infecções por Vírus Epstein-Barr , Tumor de Músculo Liso , Ligante 4-1BB , Linfócitos B , Herpesvirus Humano 4 , Humanos , Tumor de Músculo Liso/genética , Tumor de Músculo Liso/metabolismo , Tumor de Músculo Liso/patologia , Linfócitos T
6.
J Virol ; 96(12): e0039422, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35612313

RESUMO

The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children.


Assuntos
Infecções por Vírus Epstein-Barr , Deleção de Genes , Genoma Viral , Herpesvirus Humano 4 , Transtornos Linfoproliferativos , Adulto , Infecções Assintomáticas , Criança , Herpesvirus Humano 4/genética , Humanos , Células Matadoras Naturais/virologia , Transtornos Linfoproliferativos/virologia , Linfócitos T/virologia
7.
Sci Immunol ; 7(69): eabi7160, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333544

RESUMO

IKZF1/IKAROS is a key transcription factor of lymphocyte development expressed throughout hematopoiesis. Heterozygous germline IKZF1 haploinsufficient (IKZF1HI) and dominant-negative (IKZF1DN) variants in humans cause B cell immune deficiency and combined immunodeficiency. Here, we identified previously unidentified heterozygous IKZF1 variants (R183C/H) located in the DNA binding domain in eight individuals with inflammatory, autoimmune, allergic symptoms, and abnormal plasma cell (PC) proliferation. Leukocytes of patients exhibited specific defects including impaired IL-2 production by T cells, T helper (TH) skewing toward TH2, low numbers of regulatory T cells (Treg), eosinophilia, and abnormal PC proliferation. In contrast to IKZF1HI and IKZF1DN, IKZF1R183H/C proteins showed increased DNA binding associated with increased gene expression of TH2 and PC differentiation, thus demonstrating that IKZF1R183H/C behave as gain-of-function (GOF) alleles. In vitro treatment with lenalidomide, known to degrade IKZF1, corrected TH2 and PC abnormalities caused by IKZF1R183H/C. These data extend the spectrum of pathological mechanisms associated with IKZF1 deficiencies and highlight the role of IKZF1 in late lymphoid differentiation stages.


Assuntos
Mutação com Ganho de Função , Fator de Transcrição Ikaros , Linfócitos B , DNA , Haploinsuficiência , Hematopoese , Humanos , Fator de Transcrição Ikaros/genética , Linfócitos T
8.
Blood ; 139(17): 2585-2600, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35157765

RESUMO

Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.


Assuntos
Imunodeficiência Combinada Severa , Disbiose , Humanos , Imunidade Inata , Imunidade nas Mucosas , Imunoglobulina A , Subunidade gama Comum de Receptores de Interleucina/genética , Janus Quinase 3/genética , Linfócitos/metabolismo , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
9.
J Clin Immunol ; 42(3): 559-571, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35000057

RESUMO

PURPOSE: X-linked inhibitor of apoptosis protein (XIAP) deficiency, also known as the X-linked lymphoproliferative syndrome of type 2 (XLP-2), is a rare immunodeficiency characterized by recurrent hemophagocytic lymphohistiocytosis, splenomegaly, and inflammatory bowel disease. Variants in XIAP including missense, non-sense, frameshift, and deletions of coding exons have been reported to cause XIAP deficiency. We studied three young boys with immunodeficiency displaying XLP-2-like clinical features. No genetic variation in the coding exons of XIAP was identified by whole-exome sequencing (WES), although the patients exhibited a complete loss of XIAP expression. METHODS: Targeted next-generation sequencing (NGS) of the entire locus of XIAP was performed on DNA samples from the three patients. Molecular investigations were assessed by gene reporter expression assays in HEK cells and CRISPR-Cas9 genome editing in primary T cells. RESULTS: NGS of XIAP identified three distinct non-coding deletions in the patients that were predicted to be driven by repetitive DNA sequences. These deletions share a common region of 839 bp that encompassed the first non-coding exon of XIAP and contained regulatory elements and marks specific of an active promoter. Moreover, we showed that among the 839 bp, the exon was transcriptionally active. Finally, deletion of the exon by CRISPR-Cas9 in primary cells reduced XIAP protein expression. CONCLUSIONS: These results identify a key promoter sequence contained in the first non-coding exon of XIAP. Importantly, this study highlights that sequencing of the non-coding exons that are not currently captured by WES should be considered in the genetic diagnosis when no variation is found in coding exons.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Transtornos Linfoproliferativos , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Células Germinativas/metabolismo , Humanos , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/metabolismo , Masculino , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
12.
JCI Insight ; 5(5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32161190

RESUMO

Cytidine triphosphate (CTP) synthetase 1 (CTPS1) deficiency is caused by a unique homozygous frameshift splice mutation (c.1692-1G>C, p.T566Dfs26X). CTPS1-deficient patients display severe bacterial and viral infections. CTPS1 is responsible for CTP nucleotide de novo production involved in DNA/RNA synthesis. Herein, we characterized in depth lymphocyte defects associated with CTPS1 deficiency. Immune phenotyping performed in 7 patients showed absence or low numbers of mucosal-associated T cells, invariant NKT cells, memory B cells, and NK cells, whereas other subsets were normal. Proliferation and IL-2 secretion by T cells in response to TCR activation were markedly decreased in all patients, while other T cell effector functions were preserved. The CTPS1T566Dfs26X mutant protein was found to be hypomorphic, resulting in 80%-90% reduction of protein expression and CTPS activity in cells of patients. Inactivation of CTPS1 in a T cell leukemia fully abolished cell proliferation. Expression of CTPS1T566Dfs26X failed to restore proliferation of CTPS1-deficient leukemia cells to normal, except when forcing its expression to a level comparable to that of WT CTPS1. This indicates that CTPS1T566Dfs26X retained normal CTPS activity, and thus the loss of function of CTPS1T566Dfs26X is completely attributable to protein instability. This study supports that CTPS1 represents an attractive therapeutic target to selectively inhibit pathological T cell proliferation, including lymphoma.


Assuntos
Carbono-Nitrogênio Ligases/genética , Diferenciação Celular , Homozigoto , Linfócitos/imunologia , Mutação , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células , Humanos , Imunofenotipagem , Células Jurkat , Ativação Linfocitária
14.
J Exp Med ; 216(12): 2800-2818, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31537641

RESUMO

Infection of T cells by Epstein-Barr virus (EBV) causes chronic active EBV infection (CAEBV) characterized by T cell lymphoproliferative disorders (T-LPD) of unclear etiology. Here, we identified two homozygous biallelic loss-of-function mutations in PIK3CD and TNFRSF9 in a patient who developed a fatal CAEBV. The mutation in TNFRSF9 gene coding CD137/4-1BB, a costimulatory molecule expressed by antigen-specific activated T cells, resulted in a complete loss of CD137 expression and impaired T cell expansion toward CD137 ligand-expressing cells. Isolated as observed in one sibling, CD137 deficiency resulted in persistent EBV-infected T cells but without clinical manifestations. The mutation in PIK3CD gene that encodes the catalytic subunit p110δ of the PI3K significantly reduced its kinase activity. Deficient T cells for PIK3CD exhibited reduced AKT signaling, while calcium flux, RAS-MAPK activation, and proliferation were increased, suggestive of an imbalance between the PLCγ1 and PI3K pathways. These skewed signals in T cells may sustain accumulation of EBV-infected T cells, a process controlled by the CD137-CD137L pathway, highlighting its critical role in immunity to EBV.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/deficiência , Infecções por Vírus Epstein-Barr/etiologia , Herpesvirus Humano 4/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência , Ativação Viral/genética , Ativação Viral/imunologia , Classe I de Fosfatidilinositol 3-Quinases/química , Suscetibilidade a Doenças , Infecções por Vírus Epstein-Barr/diagnóstico , Mutação em Linhagem Germinativa , Histocitoquímica , Homozigoto , Humanos , Imunofenotipagem , Mutação com Perda de Função , Ativação Linfocitária , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/metabolismo , Modelos Moleculares , Linhagem , Fosfolipase C gama/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Relação Estrutura-Atividade , Linfócitos T/virologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/química
15.
Eur J Immunol ; 49(6): 894-910, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30912587

RESUMO

It is established that iNKT cells are a cell type that require strong TCR signal for their proper development and represent a model for thymic agonist selection. The nature of the signal perceived by iNKT cells promoting their specification is not well understood. To address this question, we analyzed iNKT cell development in relevant TCR Vα14-Jα18 alpha chain transgenic mice (Vα14Tg). In CD4-Vα14Tg mice, where the transgene is driven by CD4 promoter, we identified a block in iNKT cell development at early developmental stages due to a reduced expression of key transcription factors accompanied with a reduced TCR expression levels. This indicates that TCR signal strength control iNKT cell differentiation. Importantly, we found in WT mice that early precursors of iNKT cells express higher TCR levels compared to positively selected precursors of mainstream T cells showing that TCR levels could contribute to the strength of iNKT cell TCR signaling. Overall, our study highlights TCR signal strength associated with a higher TCR density as an important regulator of iNKT cell lineage specification.


Assuntos
Células T Matadoras Naturais/citologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/citologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
J Clin Invest ; 128(7): 3071-3087, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29889099

RESUMO

Ikaros/IKZF1 is an essential transcription factor expressed throughout hematopoiesis. IKZF1 is implicated in lymphocyte and myeloid differentiation and negative regulation of cell proliferation. In humans, somatic mutations in IKZF1 have been linked to the development of B cell acute lymphoblastic leukemia (ALL) in children and adults. Recently, heterozygous germline IKZF1 mutations have been identified in patients with a B cell immune deficiency mimicking common variable immunodeficiency. These mutations demonstrated incomplete penetrance and led to haploinsufficiency. Herein, we report 7 unrelated patients with a novel early-onset combined immunodeficiency associated with de novo germline IKZF1 heterozygous mutations affecting amino acid N159 located in the DNA-binding domain of IKZF1. Different bacterial and viral infections were diagnosed, but Pneumocystis jirovecii pneumonia was reported in all patients. One patient developed a T cell ALL. This immunodeficiency was characterized by innate and adaptive immune defects, including low numbers of B cells, neutrophils, eosinophils, and myeloid dendritic cells, as well as T cell and monocyte dysfunctions. Notably, most T cells exhibited a naive phenotype and were unable to evolve into effector memory cells. Functional studies indicated these mutations act as dominant negative. This defect expands the clinical spectrum of human IKZF1-associated diseases from somatic to germline, from haploinsufficient to dominant negative.


Assuntos
Mutação em Linhagem Germinativa , Fator de Transcrição Ikaros/genética , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Mutação com Perda de Função , Adolescente , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Linfócitos B/imunologia , Criança , Pré-Escolar , Feminino , Genes Dominantes , Heterozigoto , Humanos , Fator de Transcrição Ikaros/química , Fator de Transcrição Ikaros/imunologia , Lactente , Masculino , Células Mieloides/imunologia , Linhagem , Fenótipo , Domínios Proteicos/genética , Homologia de Sequência de Aminoácidos , Linfócitos T/imunologia , Adulto Jovem
18.
J Crohns Colitis ; 12(9): 1104-1112, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-29788237

RESUMO

BACKGROUND AND AIMS: An expanding number of monogenic defects have been identified as causative of severe forms of very early-onset inflammatory bowel diseases [VEO-IBD]. The present study aimed at defining how next-generation sequencing [NGS] methods can be used to improve identification of known molecular diagnosis and to adapt treatment. METHODS: A total of 207 children were recruited in 45 paediatric centres through an international collaborative network [ESPGHAN GENIUS working group] with a clinical presentation of severe VEO-IBD [n = 185] or an anamnesis suggestive of a monogenic disorder [n = 22]. Patients were divided at inclusion into three phenotypic subsets: predominantly small bowel inflammation, colitis with perianal lesions, and colitis only. Methods to obtain molecular diagnosis included functional tests followed by specific Sanger sequencing, custom-made targeted NGS, and in selected cases whole exome sequencing [WES] of parents-child trios. Genetic findings were validated clinically and/or functionally. RESULTS: Molecular diagnosis was achieved in 66/207 children [32%]: 61% with small bowel inflammation, 39% with colitis and perianal lesions, and 18% with colitis only. Targeted NGS pinpointed gene mutations causative of atypical presentations, and identified large exonic copy number variations previously missed by WES. CONCLUSIONS: Our results lead us to propose an optimised diagnostic strategy to identify known monogenic causes of severe IBD.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/etiologia , Adolescente , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Doenças Inflamatórias Intestinais/terapia , Masculino , Valor Preditivo dos Testes
19.
EMBO Mol Med ; 10(2): 188-199, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29282224

RESUMO

Inherited CTPS1, CD27, and CD70 deficiencies in humans have revealed key factors of T-lymphocyte expansion, a critical prerequisite for an efficient immunity to Epstein-Barr virus (EBV) infection. RASGRP1 is a T-lymphocyte-specific nucleotide exchange factor known to activate the pathway of MAP kinases (MAPK). A deleterious homozygous mutation in RASGRP1 leading to the loss RASGRP1 expression was identified in two siblings who both developed a persistent EBV infection leading to Hodgkin lymphoma. RASGRP1-deficient T cells exhibited defective MAPK activation and impaired proliferation that was restored by expression of wild-type RASGRP1. Similar defects were observed in T cells from healthy individuals when RASGRP1 was downregulated. RASGRP1-deficient T cells also exhibited decreased CD27-dependent proliferation toward CD70-expressing EBV-transformed B cells, a crucial pathway required for expansion of antigen-specific T cells during anti-EBV immunity. Furthermore, RASGRP1-deficient T cells failed to upregulate CTPS1, an important enzyme involved in DNA synthesis. These results show that RASGRP1 deficiency leads to susceptibility to EBV infection and demonstrate the key role of RASGRP1 at the crossroad of pathways required for the expansion of activated T lymphocytes.


Assuntos
Proteínas de Ligação a DNA/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/imunologia , Fatores de Troca do Nucleotídeo Guanina/genética , Doença de Hodgkin/genética , Doença de Hodgkin/imunologia , Proliferação de Células , Células Cultivadas , Criança , Proteínas de Ligação a DNA/metabolismo , Suscetibilidade a Doenças , Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Síndromes de Imunodeficiência/virologia , Linhagem , Doenças da Imunodeficiência Primária
20.
J Exp Med ; 214(1): 73-89, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011863

RESUMO

Epstein-Barr virus (EBV) infection in humans is a major trigger of malignant and nonmalignant B cell proliferations. CD27 is a co-stimulatory molecule of T cells, and inherited CD27 deficiency is characterized by high susceptibility to EBV infection, though the underlying pathological mechanisms have not yet been identified. In this study, we report a patient suffering from recurrent EBV-induced B cell proliferations including Hodgkin's lymphoma because of a deficiency in CD70, the ligand of CD27. We show that EBV-specific T lymphocytes did not expand properly when stimulated with CD70-deficient EBV-infected B cells, whereas expression of CD70 in B cells restored expansion, indicating that CD70 on B cells but not on T cells is required for efficient proliferation of T cells. CD70 was found to be up-regulated on B cells when activated and during EBV infection. The proliferation of T cells triggered by CD70-expressing B cells was dependent on CD27 and CD3 on T cells. Importantly, CD27-deficient T cells failed to proliferate when stimulated with CD70-expressing B cells. Thus, the CD70-CD27 pathway appears to be a crucial component of EBV-specific T cell immunity and more generally for the immune surveillance of B cells and may be a target for immunotherapy of B cell malignancies.


Assuntos
Ligante CD27/fisiologia , Infecções por Vírus Epstein-Barr/imunologia , Transdução de Sinais/fisiologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia , Linfócitos B/imunologia , Ligante CD27/deficiência , Ligante CD27/genética , Criança , Códon sem Sentido , Humanos , Ativação Linfocitária , Masculino , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...